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An attempt to solve the Har t ree-Fock  equations for the (non-relativistic) 
carbon and fluorine atoms is reported. No constraints are placed on the 
minimisation of the parametrised energy function arising from the use of the 
finite expansion method within the single determinant model of atomic 
electronic structure except those implicit in the expansion method itself. 

Key words: Har t ree-Fock  - Carbon - Fluorine. 

1. Introduction 

The use of atomic or molecular symmetry to classify the solutions of the Har t r ee -  
Fock equations and so to factorise these equations dates from the very beginning 
of the Har t ree-Fock  model both in its numerical [1] and finite expansion [2] 
forms. Unfortunately this extremely attractive and computationally convenient 
method is without a theoretical basis. In fact, in a relatively recent proof of the 
existence of the solutions of the HF equations for neutral systems, Lieb and Simon 
[3] were unable to find any justification for the idea that individual atomic or 
molecular orbitals should be related to the symmetry of the one-electron part of 
the effective Hamiltonian. In fact, it is easy to see that the imposition of these 
atomic or molecular "symmetries" does constrain the single-determinant wave 
function to exclude physical effects which are normally thought to be within the 
I-IF model. For example, the HF method is usually considered to include the 
relative polarisations of orbitals (an "average repulsion effect") but the rigid 
separation of s, p and d . . .  shells specifically excludes the possibility of an unfilled 
p shell polarising an s-shell. 
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In the case of atoms there are (at least) three distinguishable types of symmetry 
restriction usually placed on the approximate Har t ree-Fock  orbitals. 

(i) The total wave function is constrained to be a "spin" eigenfunction and/or  
the individual orbitals are constrained to be eigenfunctions of ~2 and ~z. 

(ii) The total wavefunction is constrained to be an eigenfunction of/~2 and/-~z 
and/or  the individual orbitals are chosen to be eigenfunctions of [2 and fz. 

(iii) The "equivalence restriction": sets of orbitals of the same value of [2 are 
constrained to have the same radial function. 

These constraints can be combined in various ways and, individually or in 
conjunction, all conspire to frustrate the action of the variational method leading 
to (e.g.) saddle points in the energy functional not true minima. 

In this note we report  the results of carrying through as full a solution as is 
technically possible of the unconstrained HF equations for two atoms using the 
finite expansion method. In this approach the HF energy functional is replaced by 
a parametrised energy function: we term this approach the "parametrised varia- 
tion method".  

2. The Carbon and Fluorine Atoms  - approximate Hartree-Fock Orbitals 

The carbon and fluorine atoms were chosen since they are the most clear-cut cases 
where the negative atomic ions are predicted by the constrained HF model to be 
stable and we wish to take up the problem of the existence of HF orbitals for 
negative ions elsewhere. 

Clementi's tables [4] give the following energies (in atomic units) for the carbon 
and fluorine atoms 

C F 

-37 .688611 -99 .409284  

These results are obtained by a combined l inear/non-linear optimisation of a set 
of STOs within the spherical approximation, the equivalence restriction and the 
"spin" eigenfunction constraint. 

We have carried through the unconstrained solution of the parametric variation 
method for the two atoms. The basis functions were STOs and, because of the 
rather heavy computational burden involved in the optimisation of the non-linear 
parameters (orbital exponents), we adopted a device which will render our 
non-linear optimisations not quite complete. We added "symmetry-breaking" 
basis functions to a double-zeta basis, optimised the exponents of the new orbitals 
and then did the final calculation with Clementi 's "Har t ree -Fock  basis" in place 
of the double-zeta basis. It is clear that the optimum "symmetry-breaking" basis 
functions would differ slightly between the two "symmetry-adapted"  bases but 
there are good reasons to suspect that the differences would be very small. In any 
case, to optimise the non-linear parameters for a large basis of s, p, d, f, g etc. 
STOs would quickly exhaust our computer budget. 
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The basis of STOs was "doubled"  by allowing each spatial function to be 
multiplied by the two "spin" functions and all coefficients were allowed to be 
complex. In fact, as is known in a variety of contexts, the linear-expansion SCF 
procedure does tend to "encourage"  the retention of spurious symmetries and so 
at least the initial ,explanatory runs were done interactively on the computing 
system and the density matrices were changed by small amounts from time to time 
to encourage the loss of the various symmetries. Thus any one Har t ree-Fock  
orbital can be a linear combination of s, p, d, f, g . . .  with both "spin" components: 
each orbital may not be an eigenfunction of ~z, f2 or/'z. One complication which 
caused some problems with the computer implementation was the necessity of 
computing a large number of unfamiliar atomic electron repulsion integrals - 
integrals which, although non-zero, do not appear in the spherical approximation 
because of the restricted form of the P matrix. 

An attempt was made to, as far as possible, separate the effects of the relaxation of 
the three constraints. The easiest is the "spin" constraint: simply performing a 
DODS calculation with the existing Clementi basis with the spherical approxima- 
tion and equivalence restriction gives some measure of this effect. Maintaining the 
spherical approximation, we can allow the three p orbitals to be different by 
allowing the corresponding basis functions to have different exponents during the 
optimisation. Finally, the effect of inter-shell polarisation can be allowed for by 
adding "polarisation functions" - basis functions of higher l and m values: for a 
first row atom: d, f, g etc. Naturally these effects are not simply independent and 
additive; the addition of polarisation functions enables the DODS calculation to 
have more freedom etc. But we can get an indication of the order of magnitude of 
the energy terms involved. 

The energy results of the various calculations are presented in Tables 1-4. Tables 
1 and 2 give the total electronic energies for the various calculations on carbon and 
fluorine respectively. Tables 2 and 3 give the orbital energies for the "final" 
augmented "Clementi  HF"  basis together with some projected experimental 

Table 1. The  Carbon Atom:  augmented  "Har t r ee -Fock"  basis functions 

Basis New STO exponents  Total energy Comment s  

Clementi  a (1) - -  - 37 .688611  

Clementi  a (2) - -  - 37 .689976  

Clementi  b plus 2 x 3do (3) 1.8544, 1.0824 -37 .693671  

As  above b plus 

4f-1,  4fo, 4fl  (4) 1.2140 -37 .693679  

" R H F "  

D O D S  

Polarisation of " s "  shells 

Back polarisation of " p "  
shell 

As above b plus 5go (5) 2.0 b - 37 .693680  Further  polarisation of " s "  
shells 

a Ref. [5]. 
b Not optimised, energy gradients too low. 
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Table 2. The Fluorine Atom: augmented "Hartree-Fock" basis functions 

D. B. Cook 

Basis New STO exponents Total energy Comments 

Clementi a (1) - -  

As above (2) - -  

As above b 2 x 3do (3) 1.9392, 3.2297 

As above b 
4f-1, 4/0, 4fl (4) 3.3775 

As above b 
5go (5) 4.0 b 

-99.409284 RHF 

-99.410900 DODS 

-99.411772 Polarisation of "s"  shells 

-99.412126 Back polarisation of "p" 
(13) shells 

-99.412126 Almost negligible 
(14) further polarisation 

of "s"  shells 

a R e f .  [5] .  
b Not optimised, energy gradients too small. 

Table 3. The Carbon Atom: orbital energies 

Orbital (1) a (2) (3) (4) (5) "Expt. ''b 

ls  
ls '  
2s 
2s' 
2p 
2p' 

-11.32552 -11.34553 -11.34553 -11.34554 -11.34554 -10.8 
-11.32552 -11.30057 -11.30057 -11.30057 -11.30057 -10.8 
-0.70563 -0.82916 -0.82916 -0.82917 -0.82917 -0.715 
-0.70563 -0.58349 -0.58349 -0.58350 -0.58350 -0.715 
-0.43334 -0.43907 -0.43907 -0.43908 -0.43908(5) -0.395 
-0.43334 -0.43907 -0.43907 -0.43908 -0.43908(5) -0.395 

a See Table 1 for basis. 
b Ref. [4] p 206. 

Table 4. The Fluorine Atom: orbital energies 

Orbital basis a 

Orbital (1) a (2) (3) (4) (5) "Expt. ''b 

15 
l s '  
2s 
2s ~ 
2pl 
2p2 
2p3 
2p4 
2ps 

-26.38294 -26.407371 -26.407257 -26.407218 -26.407218 -25.6 
-26.38294 -26.359112 -26.359046 -26.359022 -26.359022 -25.6 

-1.57255 -1.671676 -1.671906 -1.671868 -1.671868 -1.475 
-1.57255 -1.474458 -1.474994 -1.475017 -1.475017 -1.475 
-0.73001 -0.786737 -0.788484 -0.788658 -0.788658 -0.685 
-0.73002 -0.786737 -0.788484 -0.788658 -0.788658 -0.685 
-0.73001 -0.735701 -0.731842 -0.731690 -0.731690 -0 .685  
-0.73001 -0.674582 -0.678388 -0.679899 -0.679899 -0.685 
-0.73001 -0.673405 -0.671404 -0.670603 -0.670603 -0.685 

a See Table 2 for basis. 
b Ref. [4] p 206. 
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ionisation potentials [5]. There are some very obvious points to be made: first, the 
"spin" eigenfunction constraint is important in both carbon and fluorine, the 
DODS calculation showing a significant energy lowering (0.0014 h for C, 
0.0016 h for F); secondly there is a law of diminishing returns for the energy 
lowering as orbitals of higher and higher l value are included in the basis. In the 
case of the carbon atom there is a relatively large energy lowering on admission of 
the two 3d0 STOs -- almost three times the DODS lowering - while, for fluorine 
the lowering is much less - less, in fact, than the DODS effect. Addition of 4f  and 
5g STOs gives very small energy improvements. Indeed, after addition of 5g 
STOs it is rather ditficult to optimise the non-linear (orbital exponent) parameter  
since the gradients are so small ( -10-7) .  Nevertheless, the expected polarisations 
do occur as the small but non-zero populations of these higher orbitals show. 
However,  in view of comments to be made in the next section, it would prove no 
surprise to us if our optimisations proved to be incomplete. 

3. Comments on the Approximate Hartree-Fock Orbitals 

The first thing to note is that the spatial orbitals are not eigenfunctions of [2  the 
"2s"  orbital of carbon consists, for example, of a dominant contribution of s 
character combined with smaller amounts of basis functions of even l: d and g in 
our approximation. Also the incomplete " p "  shell means that the DODS part of 
the solution operates; the "2s"  and " l s "  orbitals are different for different 
"spins". Repeated attempts to force the orbitals of even and odd I to mix - by 
starting the calculation with non-zero elements in the "mixing" positions - failed 
as did attempts to get basis functions of different "spin" to form combinations. 
Also, only the 3d0 basis functions mixed with the s-type basis functions and only 
4f_1 with p_l-type (and 4to with P0, 4fl, with pl). The orbitals remaining 
eigenfunctions of ~,~ in the face of all odds. We thus have some empirical evidence 
for the symmetries of the atomic Har t ree-Fock  orbitals. This evidence is naturally 
not at all conclusive since it is limited by the fact that we have only used basis 
functions of a very limited type; containing spherical harmonics and exponential 
radial functions. Notwithstanding the shaky empirical nature of the evidence we 
may conjecture (for future theoretical investigation) that the Har t ree-Fock  orbi- 
tals of atoms may well be eigenfunctions of gz, ~z and the parity operator.  We 
specifically exclude g2 since there is no scope in the "spin"-space for "spin" 
functions which are not eigenfunctions of g2. The individual orbitals are not 
eigenfunctions of rE. The resultant single-determinant wave function is found to 
be an eigenfunction of the many-electron operators ~z and/~,z but not of/~2 or ~2. 
If we accept, for the moment,  the validity of our deductions that the only 
"conserved" spatial quantities are ~'~ and parity then none of the four co-ordinate 
systems in which the hydrogen atom Schrodinger equation separates [6] will 
separate the atomic Har t ree-Fock  equations. We can therefore see no need to 
maintain the traditional form of variational trial functions: 

Y•(O, r  (r). 
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The theoretical evidence does not justify it and the empirical numerical evidence 
is against it. We hope to return to this problem in a later report. 

Examination of Table 4 which gives the orbital energies at various levels of 
approximation shows a departure from the equivalence restriction for fluorine 
(which does not occur for carbon - but see later). The five occupied "2p"  AO' s  do 
not all have the same orbital energy - in fact there are four different 2p orbital 
energies. This phenomenon occurs even at the DODS level with the usual s and p 
only basis. This breakdown of the equivalence restriction naturally suggests that 
we should go back to the original restricted bases used as starting point and allow 
the 2p STOs to have "different exponents for different m values" to attempt to 
make up for any deficiencies in the restricted STO basis. So, in fact, we attempted 
to "re-optimise" the double-zeta basis of Clementi by freeing the six 2p STO 
exponents completely. Several calculations were tried using the original restricted 
STO basis and bases for which slight changes were made among a given set of 
three to "encourage" any splitting. 

In fact it was found that the double zeta basis functions for the fluorine atom, when 
given complete freedom did become different for different m values, in marked 
contrast to those of the carbon atom which resisted attempts to make them split. 
Naturally, having re-optimised the starting basis, the two 3d0 functions were 
re-optimised but found to be little changed. However the total energy was 
lowered as in Table 5. 

The only real qualitative change on admitting different exponents for different 2p 
STOs was the complete disappearance of any trace of the equivalence restriction. 
Using the basis of Table 5 the Hart ree-Fock calculation for the fluorine atom 
gives a single determinant of 9 orbitals each of which is different; i.e. all nine have 
different orbital energies. 

Table 5. The Fluorine Atom: re-optimisation of the "double-zeta" 2p STOs plus addition of higher 
/-value 8TOs (as Table 2) 

Description of orbital basis 

Orbital C & R a (RHF) C & R" (DODS) Double z e t a  b Double zeta + higher I 

ls -26.37355 -26.396318 -26.400378 -26.400496 
ls' -26.37355 -26.350034 -26.353528 -26.353749 
2s -1.56652 -1.659895 -1.663928 -1.665433 
2s' -1.56652 -1.473032 -1.474423 -1.476830 
2pl -0.72392 -0.773226 -0.830601 -0.838391 
2p2 -0.72392 -0.773226 -0.726832 -0.723644 
2p~ -0.72392 -0.725438 -0.726692 -0.723505 
2p4 -0.72392 -0.674574 -0.675381 -0.680340 
2p5 -0.72392 -0.674295 -0.675264 -0.680222 
Totalenergy -99.401309 -99.401883 -99.402779 -99.407737 

a Roetti, C., Clementi, E.: J. Chem. Phys. 60, 4725 (1974). 
b Different 2p exponents for different m-values (6 independent exponents). 
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On the general matter  of convergence it was found that there was absolutely no 
difficulty in getting the augmented basis calculations to converge: what was 
difficult was obtaining convergence to the ground state. The only sure way of 
obtaining a sequence of augmented bases which converge to the same (assumed) 
ground state is to make the basis extensions piecemeal and to use the smaller basis 
density matrices as starting points for the new calculation. If this is not done with 
some care one often obtains smooth (linear and non-linear) convergence to any 
number of higher "states". Sometimes it is easy to identify the "state" concerned 
and make a correspondence with the symmetry-restricted calculation (or with 
experiment); so convergence to the 1S or 1D components of pZ is possible (and 
likely!). Occasionally, the calculation goes smoothly to an even higher "state" 
and, much more surprisingly in the case of carbon, to a "state" which is (in energy) 
between the 3p and aD restricted calculations. It seems at least likely that this 
self-consistent solution of the linear expansion approximation to the HF equa- 
tions is a turning point of the parametrised energy function but is unlikely to be a 
turning point of the HF energy functional and is almost certainly not a turning 
point of the energy functional associated with the true Hamiltonian. In short, it is 
an artifact of the parametrisation scheme. 

The orbital energies quoted in Tables 3 and 4 can be compared to certain 
experimental ionisation potentials. In the case of carbon there is little change in 
the highest orbital energy ( -0 .433 to -0 .439 ;  experiment 0.395) and the 
agreement with experiment is hardly affected. However,  for fluorine the change is 
larger and the agreement with experiment is much improved ( -0 .730 to -0 .671  ; 
experiment 0.685). What is more interesting however are the large changes in the 
lower orbital energies, particularly the large splitting of the 2s AOs. It is difficult 
to compare these rmmbers with experiment since the conventional analysis of 
atomic spectral data assumes the restricted form for the atomic wavefunction. 

4. Limitations 

There is one main qualification to be made to all the computed results presented 
here, namely that all optimisations of non-linear parameters are, in all probability, 
incomplete. There are two reasons for this. In the first place we have used a double 
zeta basis as a starting point in adding "symmetry breaking" basis functions and 
relaxing constraints without too much effort at re-optimising the double-zeta 
basis. Further,  the optimised additional basis functions were simply added to a 
"symmetry-restricted Har t r ee -Fock"  basis in order to get an estimate of the 
atomic energies - again no re-optimisation of the original basis was attempted. 
This leads us on to the second point; the enormous computational cost of 
performing completely general solutions of the Har t ree-Fock  equations; even for 
atoms. For example, in Clementi 's reported restricted Har t ree-Fock  calculations 
for the fluorine atom a set of six s and four p STOs are used to expand the orbitals, 
this means, at most, the diagonalisation of a 6 • 6 real symmetric matrix. If the 
same basis (i.e. without higher angular momentum polarisation functions) is used 
in a general approach the basis is (6 + 4 • 3) • 2 i.e. 36 which, together with the use 
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of complex coefficients is roughly equivalent to the diagonalisation of a 72 x 72 
real symmetric matrix: an increase of about (72/6) cubed in computation time - a 
factor of 1728. If now, two 3d, three 4f  and one 5g functions are added to the basis 
the factor becomes (96/6) cubed (4096) plus the increased complexity of the 
higher integrals. Also, the number of non-zero atomic integrals is much larger 
since the whole set must be included in the absence of any restrictions on the form 
of the density matrix. Thus the routine calculation of atomic Har t ree-Fock 
functions is out of the question. 
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